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ABSTRACT 

Malaba River is very vulnerable to climate change because it relies heavily on 

rainfall as its main flow contributor. This study’s main objective was to assess the 

impacts of climate change on streamflow in Malaba River Catchment, Uganda and it 

was achieved by downscaling the future (2020-2050) precipitation and temperature 

variables for A1B and A2 scenarios and simulating the projected climate with 

calibrated SWAT model for the two scenarios. The trend analysis was done by 

Mann-Kendall test and its magnitude was estimated using the Theil-Sen approach. 

Change analysis of the projected climate and simulated flow was determined against 

a baseline period of 1980-2004 (for climate) and 1986-2015 (for flow) respectively. 

The projected areal rainfall will increase by 0.34 mm per year for A1B which is 

averagely 1% less than the annual baseline period. Areal rainfall for A2 scenario will 

increase by 0.41 mm per year which is averagely 9% more than the baseline period. 

SWAT model was successfully calibrated and validated with NSE of 0.55 and 0.35 

respectively.  

From the developed Flow Duration Curve, A2 scenario displayed higher flows for all 

the percentiles as compared to the baseline flows while A1B scenario has lower 

flows for percentiles less than 50, and equal or slightly higher flows for percentiles 

greater than 50 as compared to the baseline flows. Therefore the Ministry of Water 

and Environment Uganda will be empowered with these results to carry out water 

resources management plan to prevent the effects that might rise from the high and 

low flows. 
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CHAPTER ONE 

INTRODUCTION 

1.1  General Introduction 

Our water resources, the only essential part of life are endangered by climate change 

and increasing population. The oceans, atmosphere, ice and land characteristics 

describe the climate system. The climate system remains in balance when the sun 

energy is balanced by the Earth’s surface radiation. An increase in concentration of 

greenhouse gases ‘flips’ this balance, redirecting larger amounts of radiated energy 

back to surface of the earth. According to the IPCC AR5 in 2013, climate change 

may be manifested through the changes in the climate mean properties such as the 

Global Mean Surface Temperature and in a report released in 2007 it had risen by 

more than 0.760C over the last century. The past three decades have been warmer 

than the previous decades and this is attributed to natural and anthropogenic causes. 

Climate change has a huge impact on weather patterns, rainfall and the hydrological 

cycle thus impacting streamflow which in turn affects soil moisture and groundwater 

recharge (UNESCO, 2007). 

 

Roughly 25% of the population in Africa is at present experiencing water shortages 

(Bates et al., 2008). This is confirmed by the Climate Moisture Index (CMI) for 

Africa which is a measure of possible water availability affected by the climate is 

below -0.75 (whereas the global range is -0.10 to -0.25). This is indicative of the 

drier conditions across the continent (Vorosmarty et al., 2005). About 65% of the 

African population will be at risk of water stress by 2025 (Gunasekara et al., 2014). 

Climate change is most likely to have an effect on developing countries like Uganda 
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whose major economy relies heavily on water. Variability in water supply has a big 

effect on health and welfare in poor areas. In the past, climate variability has had 

considerable effects in Uganda with floods in 1961, 1962, 1997, 1998 and in 2007 

which destroyed a lot of infrastructure and commercial activities, displaced many 

people (Hepworth et al., 2008). In the 1993/94 event, droughts affected a significant 

number of people which led to increased destruction of property, poverty, migration 

and disease outbreak. The above factors bear witness that the current and future 

situation regarding water availability is dire.  

 

Malaba River is of importance as it drains its waters into Lake Kyoga which 

contributes flow to the Upper Nile. In 2005/06, there were registered low flows in 

Malaba River in January and February which led to a substantial water deficit to the 

surrounding irrigation and town water supply schemes. Climate change has led to a 

decline in the terrestrial and freshwater biodiversity in Busia County (more than half 

the length of Malaba River is located in Busia County). Varying rainfall patterns due 

to climate change have affected both land preparation and food production leading to 

lower yields. The occasional rise in temperature affects moisture retention by soil 

which leads to wilting of plants, thus lower yields due to stress. Subsequently, this 

has led to increased food insecurity (MNPD, 2013). This specific research of 

assessing the impacts of climate change on streamflow in this catchment has never 

been carried out on Malaba River. Climate change is an additional source of 

uncertainty, thus necessitating a paradigm shift from conventional approaches to 

water resource planning and management in the catchment, which normally assume a 

static climate. 
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1.2  Statement of the Problem 

Climate change is one of the biggest problems affecting the world’s water. The 

United Nations has acknowledged that climate change is caused by human activities. 

Uganda is one of the countries that are greatly prone to the impacts of climate 

change.  Her economy and the well being of her citizens are tightly bound to climate 

through water resources.  

 

Over the past years, Uganda has experienced frequency of droughts, increase in the 

intensity and occurrence of heavy rains which have led to floods and landslides. 

These have in turn had an effect on surface water quantity. According to MWE 

(2012), the water levels in Lake Victoria have greatly reduced over the years and this 

is attributed to both climatic and anthropogenic factors. 

  

Malaba River is an important focal area to the Lake Kyoga basin and the Nile basin 

at large. Malaba River which is located in eastern Uganda is used for many human 

activities such as cultivation and domestic users. It is prone to climate change 

because of its heavy reliance on rainfall as its major flow contribution. There are 

uncertainties over the exact nature of impacts of future climate change in the Malaba 

River catchment but what can-not be denied is that climate variability will impact on 

the hydrological cycle which will change the distribution of surface flow. Therefore, 

there is a great need for successful water resources planning by assessing the impacts 

of future climate change on water availability and not just responding to emergency 

situations to ensure life and sustainable development. 



 
 
4 

 

1.3  Research Objectives 

1.3.1  General Objective 

To assess the impacts of future climate change (2020-2050) on streamflow in Malaba 

River 

 

1.3.2  Specific Objectives 

1. To project the climate change variables during 2020-2050 period for the 

Malaba River catchment based on the selected climate scenarios. 

2. To simulate streamflow of the catchment using SWAT model. 

3. To assess the impact of climate change on streamflow. 

 

1.4  Research Questions 

1. What is the regime of projected climate change variables for the selected 

climate scenarios? 

2. How suitable is SWAT model for simulating streamflow in catchment? 

3. What is the extent of impacts of climate change on streamflow? 

 

1.5  Significance of the Study 

The stakeholders in Kyoga Water Management Zone will be empowered with the 

findings which will enable them to plan ahead interms of water availability for the 

different water users. The Ministry of water and environment in Uganda will be in 

position to strengthen the catchment planning process and this will be a platform for 

further studies to be carried out on the other catchments and the Government of 
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Uganda will also benefit by having more publications on climate change at the end of 

this research. 

 

1.6  Scope of the Study 

This study concentrated on how Malaba River catchment responds to major stresses 

of climate change interms of water quantity. The study indirectly took into account 

the other non-climatic impacts for example demographic trends, technological and 

socio-economic development depending on the selected climate scenarios. It did not 

consider the impact of climate change on water quality and socio economic activities. 

Changes in land use were not considered in simulation of future stream flow under 

changing climate. However, the method used in this study separated the impacts of 

changes in land use on streamflow. Therefore, the impacts were explicitly from 

climate change. 

 

This study only deals with streamflow only in Malaba River and not other surface 

streams in the catchment. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  Uganda’s Climate 

Uganda’s tropical climate is described by seasonal rainfall due to the movement of 

latitudes along the low-pressure channel of the equator and convergence zone of the 

inter-tropics. In the tropics, the most significant climate element is rainfall that plays 

a significant part in the economies of the majority tropical countries (Nsubuga et al., 

2014). Uganda’s rainfall displays a huge variance in time (temporal) and space 

(spatial). The spatial variation is credited to large and local scale systems such as 

inland water bodies which include Lake Victoria, Lake Kyoga, among others and the 

difficult topography. The two main rainfall regimes experienced in Uganda are 

bimodal and unimodal. March to June is the first rainy season, while August to 

November is the second one. Uganda’s mean annual rainfall is roughly about 1300 

mm and this shows great spatial variability, ranging from 100 mm in the dry areas 

and over 3000 mm on the slopes of Mountain Elgon (MWE, 2012). The country has 

a moderate climate with a long-term mean temperature of 210C. Mean annual 

temperatures range from 150C to 300C in July and February respectively. 

 

2.2  General Overview of Water Resources in Uganda 

Uganda’s total area covers 241,038 km2, of which 18% is open water and wetlands. 

The area is spread across the equator between latitude 100 30’ South and 100 40’ 

North, and longitude 290 30’ West and 290 35’ East. Most areas in the country lie at 

an average altitude of 1,200 m above sea level with the Albert Nile area having an 

altitude of 620 m atleast and an altitude of 5,110 m above sea level at most at the Mt. 
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Rwenzori peak (NBI, 2014). Uganda possesses plentiful water resources and one of 

them is the second largest freshwater lake in the world (Lake Victoria) among others. 

Major rivers such as the Nile is the longest river in the world, Rwizi, Katonga, Kafu, 

Mpologoma, Malaba and Aswa (MWE, 2015). Most parts of Uganda lie within the 

upper river basin of the White Nile except a small part located in the northeast which 

drains into Kenya’s Lake Turkana basin. The country is partitioned into eight major 

sub-basins that drain into the Nile and these are: L. Victoria, L. Kyoga, R. Kafu, L. 

George and Edward, L. Albert, R. Aswa, Albert Nile and Kidepo Valley. 

 
2.3  Overview of Malaba River catchment 

The sub-catchment receives an annual rainfall of between 760 mm and 2000 mm. 

About 50 per cent of the rainfall falls in the long rainy season, which is at its peak 

between late March and late May, while 25 per cent falls during the short rains 

between August and October. The dry season with scattered rains falls from 

December to February. The annual mean maximum temperatures for the sub-

catchment range between 23.0°C and 25.5°C while the mean minimum temperature 

range between 19.0°C and 22.0°C. Middle of Malaba Sub-catchment is in a sub-

humid type of climate with an average relative humidity of 52% to 89%. The flow 

series of the river is low during the dry months of December to the end of January 

after which the flows increases to maximum in July and August. There are other 

streams in both Kenya and Uganda that drains into Malaba River and contribute to 

the annual flow volume of the river. The sub-catchment is endowed with various 

types of wetland that are precious resources to the communities of the sub-
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catchment. Biodiversity in the sub-catchment consists of numerous plant species and 

avifauna that best indicates its rich endowment of natural resources.  

 

The population of the sub-catchment is currently 189,235 persons (NBI, 2014). With 

the growth rate for Busia County, Kenya as 3.1%  whilst that of Tororo District, 

Uganda as 2.4% (Moses, 2009) per annum, the sub-catchment’s population is 

expected to increase at a faster rate which will put pressure on the available natural 

resources. This necessitates the development of a plan that shall ensure that the 

communities in the sub-catchment attain maximum benefits from utilizing the 

available natural resources in a more sustainable manner.  

 

2.4  Climate Change 

Our water resources are experiencing great pressure due to global climate change and 

its awareness is being raised. Long-term climate change has been experienced at 

global, regional, and ocean basin scales, due to increasing concentration of 

greenhouse gases most especially carbon dioxide. These include changes in 

precipitation amounts and timings, arctic temperatures and different types of extreme 

weather like heavy rainfall, drought, and heat waves (IPCC, 2007). 

 

The pattern of rainfall is unevenly distributed across the world and is governed by 

atmospheric circulation patterns and moisture availability. These two factors are 

affected by temperature so the pattern of rainfall is expected to change due to 

changing temperature. The changes include the type of precipitation, the amount, the 

intensity and the frequency. Rainfall has increased by 0.2 to 0.3% for every decade in 
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the African tropics (10°N to 10°S) with a decrease in the Northern Hemisphere sub-

tropics (10°N to 30°N) throughout the 20th century by approximately 0.3% per 

decade (Trenberth and Josey, 2007). Rise in temperatures has caused the melting of 

ice and glaciers on mountain tops. Mountain Rwenzori is one of a few mountains in 

Africa with a permanent ice-cap. Current studies have exposed that the ice cap on 

this mountain has decreased significantly. About 82% of the Mt Kilimanjaro 1912 

ice cap in Kenya has melted and by 1990, 40% of Mt Rwenzori had receded 

compared to 1955 recorded cover (UNESCO, 2007). These changes have been 

attributed to global warming (IPCC, 2007). Increasing global average air and ocean 

temperature can change the type of rainfall during winter season (IPCC, 2007) 

 

Several climate change standards and classifications have been developed to evaluate 

and quantify these issues over the past two decades. The Intergovernmental Panel on 

Climate Change (IPCC) which was set up by the World Meteorological Organization 

(WMO) and the United Nations Environment Program (UNEP) was created in 1988. 

Its main responsibility is to put in order, based on available scientific information, 

evaluation on all angels of climate change and its effects, with a purpose of creating 

rational strategic responses. Currently the IPCC's responsibility is stated in Principles 

Governing IPCC Work as, "...to evaluate on a broad, aim, open and see-through 

foundation of the scientific, technical, social and economic data applicable to 

knowing the scientific base of anthropogenic climate change, it’s possible effects and 

alternatives for adaptation and improvement”.  
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IPCC reports ought to be unbiased in relevance to policy, even though they might be 

required to deal purposely with scientific, technical, social and economic factors 

related to the application of specific policies. Through the IPCC, the world’s climate 

experts make the most current scientific results in relation to climate each five to 

seven years. These reports are presented to the political leaders of the world. The 

IPCC Fourth Assessment Report (AR4) was issued in 2007 and comprehensive 

assessments were released in 1990, 1996, 2002 (IPCC, 2007) 

 

The changing climate in Uganda presents very serious national challenges and risks 

across various sectors such as agriculture, water resources and energy, which support 

the economy and the wellbeing of its people (Nsubuga et al., 2014). For example 

DWRM (2011) identified 8 seasonal droughts within the Lake Victoria basin in the 

period between 1990 and 1999. 2004/5 was the prominent drought period when the 

water level in Lake Victoria dropped by a meter below the 10 year average. From a 

hydrological perspective, Lake Victoria, the largest water resource exerts a big 

influence in Uganda’s climate. The main source of water for the water body is rain, 

but due to rainfall anomalies, the lake has consequently displayed large and rapid 

changes. Hastenrath (2001) demonstrated that there is a significant correlation 

between rainfall series and water levels in lake or river.  

 

2.4.1 The Climatological Baseline 

It has been recommended to achieve a numerical explanation of the expected 

climatic changes in order to have a basis for assessing impacts of climate change in 

the future. It is very essential to describe the current-day or historical climate of an 
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area or region-this is commonly known as the climatological baseline before 

considering future climate. This baseline period is important because it describes the 

observed climate and this climate is usually combined with information from climate 

change to create climate scenarios. The baseline period serves as a point of reference 

to determine the modelled climate change of the future based on the results from 

climate scenarios (Houghton, 2001). The baseline period is selected depending on the 

availability of the observed climate data and the following criteria is usually 

followed (IPCC-TGICA, 2007): 

 Replica of the day-to-day or current mean climate in the study area 

 Adequate period to include climatic variations of wide range, including 

several considerable weather periods (e.g. severe drought or cool seasons) 

 Availability, abundance and spatially distributed data of all major climatic 

variables. 

 High quality data sufficient enough to be used in assessing impacts 

 

According to WMO, the “normal” period of 30 years which doesn’t overlap is 

known as climatological baseline. 1961-1990 is the current WMO normal. Several 

substitute sources of climatic baseline data that may be useful in impact assessment 

are: (IPCC-TGICA, 2007) 

i. National Metereological agencies  

ii. Global data sets and supranational 

iii. Outputs from climate models  

iv. Weather generator  
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I National Metereological agencies  

National meteorological agencies are the most popular sources of observed climate 

data that is used in impact studies or assessments. Among other public services, the 

agencies main responsibilities are the everyday operation and maintenance of the 

equipment and weather prediction. 

 

II Global data sets and supranational  

A side’s from fulfilling a country’s needs, climatic data from several countries has 

been joined into several global datasets and supranational. These datasets consist of 

observations over land and ocean variables at a monthly time step, atmospheric and 

surface observations are at a daily time step from areas all over the globe, for current 

decades, observations from the satellite. 

 

III Climate model outputs 

Data from continental climate models that might be helpful in explaining the 

climatological baselines is of two types and these are: reanalysis data and GCM and 

RCM output. 

 

Reanalysis data; this is data that is gridded at a fine resolution which combines 

observed data with simulated data from numerical models. During the assimilation of 

data, the observed data which is sparsely accessible and unevenly throughout the 

globe, together with data from the former model predictions and satellites, are put 

into weather predicting model with a short-range. This results into a broad and 
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dynamically reliable gridded dataset with three dimensions (the “analysis”). At that 

specific time, it signifies the finest estimate of the atmosphere. 

 

Fine resolution datasets have been generated by reanalyzing the historical 

observational data that were operationally used as inputs into former versions of 

weather predicting models using the present generation of numerical models. 

Climatic scientists have mainly used these datasets for model improvement and 

testing. On the other hand, scenario developers and impact analysts always find uses 

for such data, for example, by investigating relationships between reanalyzed 

atmosphere and surface variables to create climate scenarios for regions that are 

downscaled from GCM. 

 

GCM and RCM output simulations: An additional source of data on the observed 

climate is from AOGCMs simulated every century which try to characterize the 

dynamics of the climate system from the globe done willingly by human changes in 

an atmospheric composition. 

 

IV Weather generators 

Baseline climate can also be characterized by using the stochastic weather generator. 

Daily or sub-daily synthetic weather is generated at a particular site based on the 

numerical features of the previously observed climate using computer models.  
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2.5  Global Circulation Models (GCMs) 

Climate models apply basic principles of the physical laws controlling mass and 

energy interactions in the global system which enables us to obtain knowledge and 

forecast the outcomes of greenhouse gas emissions. Models known as Global 

Circulation Model (GCM) that use mathematics generally estimate the current 

climate and project future climate by taking into consideration greenhouse gases and 

aerosols. Generally, several GCMs simulate continental and regional scale processes 

and offer a realistically precise depiction of the mean climate of the earth. 

Nevertheless, while GCMs established major skills at the global and spherical scales 

and they include a huge percentage of the difficulty of the system globally, they are 

naturally not capable of predicting sub-grid scale features and dynamics locally 

(Dibike et al., 2008). 

 

Predicting the weather in the short (1-3 days) and medium (4-10 days) range is done 

using Numerical weather prediction (NWP) models. GCM's run for a longer duration 

i.e. years and hence one is able to learn about the climate in a statistical sense with 

the help of the means and standard deviations. A good example of an excellent NWP 

model is one that is able to precisely forecast the movement and development of 

turbulences such as frontal systems and tropical cyclones. After some time (e.g. 2 

weeks) all GCMs get it wrong and turn out to be ineffective from a standpoint of 

weather foresight (Barker et al., 2007). Depending on the quality of the turbulent 

statistics, the GCM quality is judged too. A precise combination of the rapid 

atmosphere to the long memory of the sluggish ocean is very important to simulate 

the El Nino Southern Oscillation (ENSO). GCM's can additionally be combined to 
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dynamic models of sea, ice and land conditions. Dynamic ocean models are often not 

combined with short to medium range NWP models (Cayan et al., 2007). Table 2.1 

contains the summarized comparison between GCMs and NWP models. 

 

Table 2.1:  Comparison between NWP models and GCMs 

Source: http://www-das.uwyo.edu 

Differences GCM NWP 
Purpose Climate forecasting Weather forecasting  

Spatial variability Continental  
Continental or 
regional 

Temporal range Annually Daily 
Spatial resolution Mostly coarse variable (20-100 km) 
Initial conditions significance Low High 
Cloud and radiation 
significance High Low 
Significance of Surface High Low 
Ocean dynamics significance High Low 
Model stability significance High Low 
Time dimensions Vital Neglected 
Similarities     

Physics Motion equations not forgetting radiative    
transfer and water conservation equations 

Technique Limited expression of nonstop equations, or 
spectral depiction) 

Productivity 3 dimensional movement of the atmosphere 
and variability of state 

Greatest time step restricted by spatial resolution 
 

The scale disparity between GCM resolution and the progressively more small scales 

necessary by impact analysts can be eliminated by downscaling (Wilby et al., 1998). 

Model simulations in to the future “predictions” are based on assumptions 

concerning future emissions of greenhouse gases caused by anthropogenic factors, 

which later are based on assumptions about numerous factors relating to human 

activities. Therefore it is unsuitable and perhaps deceptive to identify future climate 
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simulations as ‘predictions’. These are rather identified as ‘projections’ to emphasize 

the likely exploration of future climate may arise from a range of assumptions 

regarding human activities (Cayan et al., 2007) 

 

2.6  Climate Change Scenarios 

Representative Concentration Pathways (RCPs) are four greenhouse gas 

concentration trajectories adopted by the IPCC for its fifth Assessment Report (AR5) 

in 2014. They describe four possible climate futures, all of which are considered 

possible depending on how much greenhouse gases are emitted in the years to come. 

The four RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5, are named after a possible 

range of radiative forcing values in the year 2100 relative to pre-industrial values 

(+2.6, +4.5, +6.0, and +8.5 W/m2 respectively). RCP 2.6 assumes that global annual 

GHG emissions (measured in CO2-equivalents) peak from 2010-2020 with 

considerable reduction thereafter. Emissions in RCP 4.5 peak around 2040, and then 

decline. In RCP 6, emissions peak around 2080, then declines. In RCP 8.5, emissions 

continue to rise throughout the 21st century (IPCC, 2014). These scenarios were not 

used because they are not present in LARS-WG model. 

 

The IPCC (2007) developed four climate scenarios to project emission gases and 

temperatures for the future. These scenarios are used by researchers and policy 

makers to assess potential future conditions and compare them to baseline conditions 

in lack of climate change. These scenarios can also be used to evaluate adaptation 

scenarios to mitigate the harmful impacts of climate change. 
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According to the Special Report on Emissions Scenarios (SRES) (IPCC, 2007), 

climate change scenarios are not forecasts of the future but instead they are potential 

future scenarios where every scenario represents a way the future might open out. 

Scenarios describe potential demographic conditions, environmental conditions, 

social conditions, policies, economic conditions and technologies. According to the 

IPCC (2007), the scenarios are described as follows: 

 A1 Scenario: “Describes a potential world of extremely fast growth in the 

economy, worldwide population that reaches the peak in mid-century and 

reduces after that, and the fast introduction of latest and additional competent 

technologies. The main fundamental themes are unity among regions, ability 

to build capacity and greater than before traditional and societal interactions, 

with a significant decrease in per capita income in differences regions. Three 

A1 groups are well-known by their emphasis on technology: fossil-intensive 

(A1FI), sources without fossil energy (A1T) or equilibrium of all sources 

(A1B).”  

 A2 Scenario: “Describes a very diverse continent. The fundamental theme is 

independence and protection of local identities. Very slow combination of 

fertility patterns across regions resulting into ever growing population. 

Development of the economy is mostly regional and uneven slow changing of 

per capita economic growth and technology as compared to other scenarios.”  

 B1 Scenario: “Describes a unified globe whose population growth is as low 

as in the A1 scenario but with fast change in structures in the economy in the 

direction of economical service and information, among decrease in intensity 

of material and the clean and resource-efficient introduction of technologies. 
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The importance is on world wide solutions to financial, societal and 

environmental sustainability, not forgetting enhanced fairness, but with no 

extra initiatives in climate.”  

 B2 Scenario: “Describes a globe whose importance is on economic, social 

and environmental sustainability local solutions. At a lower rate than A2, its 

global population is ever growing, median levels of development in the 

economy, and lower and extra wide-ranging change in technology compared 

to B1 and A1 storylines. Even though the scenario is also oriented towards 

protection of the environment and societal fairness, it concentrates on local 

and regional scales.  

 

Some climate change lessening scenarios demonstrate possible futures of global 

warming can be reduced by planned actions for example using green energies. For 

example, one easing scenario of climate change can define a desired long-term aim 

of carbon dioxide concentration and selected the required actions to obtain the aim 

such as putting a limit to national and international greenhouse gas emissions. 

Preventive scenarios can be compared to other scenarios like A2 and B2 inorder to 

have an overview on their effects when it comes to reducing the global warming 

(Socolow and Pacalat et al., 2006). The concentration of carbon dioxide has reached 

about 375 ppm Limitation of emission of carbon dioxide has a lot of issues such as 

cost which can make it hard to reach an agreement between governments and 

agencies. So the 550 ppm policy is one of the feasible policies that can be considered 

by policy makers and scientists to project temperature. 
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2.7 Assessing Water Resources Impacts of Climate Change 

Several types of models that simulate the hydrological processes in a catchment are 

required for the assessment of water resources. Many modelling approaches have 

been developed and previous models have been modified. Nevertheless, it should be 

taken into consideration that each model has its own advantages and disadvantages. 

Purpose, data availability, spatial and temporal scales are some of the factors that are 

considered when choosing an appropriate model.  

 

In providing detailed information on how estimating how climate variability/change 

is affecting our water resources, climate models are seen as the very helpful. 

Elshamy et al. (2008) and Nawaz et al. (2010) used temporal-spatio statistical 

downscaling technique for the various GCMs to assess climate change impacts on 

Nile River at Dongola and at Diem (Blue Nile), and varying trends depending on the 

GCM used were displayed. 

 

2.8  Hydroclimatic Models 

2.8.1  Rainfall Runoff Modelling 

A rainfall-runoff model is, by definition, a simplification of a complex, non-linear, 

time and space varying hydrological process reality (Shrestha, 2009). Several 

attempts have been conducted to categorize rainfall-runoff models. The categories 

are in general based on the subsequent criteria: (i) the application of physical 

principles and their extent in the structure of the model; (ii) the handling of 

parameters and model inputs in relation to space and time. From the physical process 

description (first criterion), stochastic and deterministic are the two categories to 
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which a rainfall-runoff model can be attributed. Randomness is not considered in a 

deterministic model therefore for a given input the same output is always produced. 

Outputs that are to some extent random are produced by a stochastic model (Hayhoe, 

2000).  

 

On this basis deterministic rainfall-runoff models are classified as: (i) data-driven 

models, (ii) conceptual models; and (iii) physically based models. A physically 

distributed model was used in this study. This is because of the extensiveness of the 

sub-basin as well as the requirement of factoring in most of the sub-basin features in 

the modelling activity.  

 

Several of the physically distributed models are MIKE SHE, SWAT etc. SWAT is a 

recurring-temporal distributed model that is used both at basin or sub-basin level 

model (Arnold et al., 2012). SWAT model was developed to forecast the effects of 

different water management decisions, chemical and sediment loading with logical 

precision. SWAT inputs are readily available, thus the least data is required to make 

a run and also it is efficient computationally. One of the merits of using SWAT 

model is that little time or time is needed to execute the simulation of large 

watersheds. Long-term effects can be studied with SWAT, also it has the powers of 

modelling watersheds without monitoring station and its data. Water balance 

equation is used by SWAT model (Equation 2.1) behind which all processes occur in 

the watershed (Neitsch et al., 2005).  

 

   (2.1) 
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Where:  

SWt and SWo are final and initial soil water content respectively (mm/d) 

t is the time (day) 

Rday is the rainfall (mm/d)  

Qsurf is the runoff (mm/d) 

 Ea is the evapo-transpiration (mm/d) 

 Wperc is the percolation (mm/d) 

 Qgw is the return flow (mm/d).  

 

SCS curve (Chai et al., 2011) and the Green and Ampt infiltration method (1911) are 

used in SWAT for surface runoff estimation. The SCS curve number is a function of 

the permeability of the soil, landuse and water conditions of the soil. Mein and 

Larson (1973) modified the Green and Ampt infiltration method to determine the 

permeability of the ponding time. Surface runoff can also be determined by using the 

Green- Ampt Mein-Larson excess rainfall method. However, this method needs 

rainfall data at sub-daily time step. 

 

Penman-Monteith, Priestley-Taylor and Hargreaves method are three methods that 

are incorporated into SWAT for computing potential evapo-transpiration. Penman-

Monteith equation includes mechanisms that explain energy required to maintain 

evaporation and the required parameters are wind speed, relative humidity, air 

temperature and solar radiation. Priestley - Taylor method requires relative humidity, 

temperature and solar radiation, whereas temperature only is needed for Hargreaves 

method. 
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2.8.1.1 Hydrological Model Selection 

The choice of model starts with the model being able to solve the problem in 

question. The three types of model structures; lumped, semi-distributed and fully-

distributed. The first task is to choose the type which can give the best solution 

objectives without compromising the accuracy of the results. Semi-distributed 

models structures are more based physically than lumped and also they demand less 

data than fully-distributed models (Cunderlik and Simonovic, 2007). The selected 

model has to be reasonably cheap, its ability to simulate most if not all hydrological 

processes (inception and infiltration, evapotranspiration), and technical support 

(experts) should be available to minimize delays. Three models were compared to 

find the best semi-distributed model to be applied (see Table 2.2)  

 

Table 2.2:  Comparison of three selected semi-distributed models 

Source: Cunderlik and Simonovic, 2007 

Model and its criteria HBV HEC-HMS SWAT 
Temporal scale Daily Adjustable Daily 
Spatial scale Adjustable Adjustable Average 
Processes 
modelled 
 
 
 
 
 

Occasional-simulation Present Present Absent 
Recurring simulation Present Present Present 
Ice melting Present Absent Present 
Interception and 
permeability 

Present Present Present 

Evapotranspiration Present Present Present 
Routing of reservoir Present Uncontrollable Present 

Cost Unknown Free  Free 
Duration of set-up Average Average Long 
Expertise Average Average High 
Technical support Available Available Available 

 

From the above, SWAT model became more suitable because of its ability to capture 

hydrological conditions in a catchment and also the availability of skilled people that 
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have used it before. However, model limitations which could make modelling 

impossible such as poor calibration and validation have been reported from SWAT 

studies but these are said to be slightly influenced by inadequate rainfall distribution 

of the rain gauges in the catchment (Arnold et al., 2012). Therefore, it was decided 

that SWAT can be used for this research. 

 

2.8.1.2 SWAT Model Parameter Sensitivity Analysis  

Sensitivity analysis of SWAT model parameters is a mechanism used to evaluate the 

input parameters to determine how they impact the model output; not only is it 

helpful for the development of the model but also for the validation of the model thus 

helpful in the reduction of uncertainty (Hamby, 1995). The sensitivity analysis 

minimizes on the parameters to be used in calibration by considering the parameters 

that are most sensitive thus fundamentally affecting the simulation process behavior. 

  

SWAT embeds a sensitivity analysis procedure called Latin Hypercube One-factor-

At-a-Time (LH-OAT). This statistical method of sensitivity analysis is used for 

analyzing the sensitivity of SWAT model parameters. Ndomba et al. (2007) 

recommended that parameter sensitivity analysis can be done before and after 

calibration and with or without observed flow data. Rainfall runoff models have 

parameters that are not directly measured often, but are only estimated by calibration 

against a historical record of measured output data. 

 

The Latin Hypercube simulation is based on the principles of Monte Carlo with a 

stratified sampling. After the subdivision of each parameter into ‘N’ ranges, an 
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occurrence probability of 1/N is obtained. The One-factor –At-a-Time design uses 

the Latin Hypercube samples as starting points and one parameter is changed at a 

time. For N intervals with ‘m’ parameters, a total of N(m+1) runs are done. The 

objective functions are the change of the mean value of the output variables (e.g. 

mean flow) for the case of non observed data, and the sum of the squared of errors 

(SSQ) between the observations and the simulations when there is an observed data 

for the required output variables (Van Griensven, 2009).  

 

The final sensitivity analysis results are ranked parameters, where the parameter with 

the highest impact gets rank 1, and the one with the least impact gets a lower rank. 

Rank 1 is the most important parameter, and as the ranking increases the importance 

of the parameter reduces (Van Griensven et al, 2006) 

 

2.8.1.3 Calibration of SWAT Model 

Calibration minimizes the error between the output simulated by the model and the 

data collected in the field (Das and Perera, 2013). Wagener et al. (2001) suggested 

that about 8 years of data are sufficient to obtain calibrations that are fairly 

insensitive to the selected period. Further, the reduction in parameter uncertainty is 

maxima when the wettest data periods on record are used. It has been also shown that 

there is no need for the data to consist of consecutive water-years. 

 

Even though physically based models do not in principle need extensive hydro-

meteorological data for their calibration, they do need the assessment of many 

parameters describing the physical characteristics of the watershed on a spatially 
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distributed basis and large amounts of data about the model initially (e.g. soil 

moisture content, initial water depth). Most of the time, however, such data are not 

available (Shrestha, 2009). Hence an automatic means of calibration fits for this 

difficult resulting from large number of parameters. There several procedures for 

calibration of SWAT model, some of the common ones are Parameter Solution 

(ParaSol), Generalized Likelihood Uncertainty Estimation (GLUE), Particle Swarm 

Optimization (PSO), Importance Sampling (IS), Markov chain Monte Carlo 

(MCMC), and Sequential Uncertainty Fitting (SUFI). Yang et al. (2008) reported 

that SUFI procedure is efficient in optimization, because it takes few runs in 

comparison to other calibration procedures mentioned earlier. Thus SUFI procedure 

was preferred over others for calibration of parameters in this study.  

 

SUFI procedure has a different approach which optimizes the use of the Latin 

Hypercube Sampling (LHS) procedure together with an algorithm that is global in 

order to observe the behaviour of functions objectively. SUFI procedure is sequential 

in nature which means that before choosing the final estimates, iteration can always 

be made. It has a Bayesian framework, signifying that domains which are uncertainty 

(prior, posterior) are related to each parameter and operated in the method. It is a 

fitting procedure which conditions unidentified parameter estimates on a range of 

observed values. Lastly, it is an iterative procedure, needing a stopping rule that is 

provided by a vital value of a goal function (Nasr et al., 2007). SUFI procedure has 

been integrated into the SWAT Calibration and Uncertainty Programs (SWAT-CUP) 

software, and it has been enhanced with capability of skipping missing observed flow 
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data in calibration. SWATCUP is available online for free such as the EAWAG 

website (Abbaspour, 2015) 

2.8.1.4 Climate Customization in SWAT 

SWAT can be used to simulate several climate customization options. By adjusting 

the climatic variables such as rainfall, temperature etc that are fed into the SWAT 

model, climate change can be simulated. An easier way is to have factors to be 

adjustment set for the different climatic variables. The adjustment factors in SWAT 

are allowed to vary monthly in order to enable the user in simulating seasonal 

changes in climatic conditions. The alteration of temperature and precipitation are 

straightforward (Neitsch et al., 2005) as below: 

 

                   (2.2) 

        (2.3) 

 

Where, Tmx and Tmn are maximum and minimum daily temperature (oC) respectively 

and adjtmp is the change in temperature (0C). 

 

       (2.4) 

 

Rday is the rainfall received in the sub-catchment on a particular day (mm H2O), and 

adjpcp is the change in rainfall in percentage 
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2.8.2 Downscaling Models 

Climate change information is essential for lots of impact studies at much finer 

spatial scale yet GCMs have hundreds of kilometers resolutions (Dibike et al., 2008). 

Therefore downscaling methods have come up as a way of linking atmospheric 

variables to a scale of grid and sub-grid. Numerical and statistical are the two major 

methods for obtaining data on regional or local scales from the GCMs generated 

scenarios of global climate (Wilby et al., 1998). Numerical downscaling (referred to 

as dynamic downscaling) involves a regional climate model (RCM) and statistical 

downscaling includes statistical relationship between the large-scale climatic state 

and local variations derived from historical data records. These two approaches are 

discussed below. 

 

2.8.2.1 Dynamic Downscaling 

It involves climate model of finer-scale regionally, and is also called limited area 

models (LAMs) within the climate model of coarser scale globally. Outputs from the 

conditions of a GCM boundary for the interested region are used in a dynamic 

method. Future climate at a scale of a region is calculated using a climate model fully 

physical in nature. The major benefit of dynamical models is that conditions at local 

scale are taken into account, which may include surface vegetation or chemistry 

changes in atmosphere in physically regular ways. However Regional climate models 

(RCMs) require as much processing time as the GCM to calculate the same scenarios 

and they cannot be transferred to new regions easily. At the start of the RCM results 

are also sensitive to choice of the initial conditions (especially soil moisture and soil 

temperature) (Nasr et al., 2007)  
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Pisinaras et al. (2016) also noted the ability of RCMs to practically simulate climate 

features such as orographic rainfall, regional scale climate anomalies and extreme 

climate events. Model skills are based so much on biases carried on from the used 

GCM and also the existence and strength of regional scale forcings such as 

vegetation cover, land-sea contrast and orography. 

 

2.8.2.2 Statistical Downscaling 

Statistical downscaling includes numerical development of relationships between 

predictors  (atmospheric variables at large scale) and predictand (surface variables at 

local scale) (Wilby et al., 1998). A good number of common forms have predictand 

as a function of the predictors. It seeks to obtain information locally from scales that 

are larger. Mostly, the climate at regional scale is seen as random process 

accustomed upon a fundamental climate regime at large-scale. Hence, the assurance 

in data that is downscaled is primarily reliant on the soundness of GCM field’s at 

large scale. For example, derivative variables such as rainfall are regularly not strong 

information at both the regional and local scale whereas tropospheric quantities such 

as temperature are fundamental physical GCM parameters and are competently 

represented by GCMs (Van Griensven et al., 2006) 

 

According to Wilby et al. (1998), the following assumptions are involved in 

statistical downscaling: (i) predictor variables large and small scale suitable 

relationships can be derived (ii) based on conditions of future climate, observed 

relationships are applicable (iii) GCMs are good at characterizing the changes of 

predictor variables.  
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Over the past few years, the development of varied statistical downscaling 

techniques has come up and each method normally one of the three categories i.e. 

regression method, stochastic weather generators and weather typing schemes 

(Wilby et al., 2004). A comparison between statistical and dynamical downscaling 

models was carried out as shown in Table 2.3. 

 

Table 2.3:  Comparison of statistical and dynamical downscaling methods 

Statistical downscaling Dynamical 
downscaling 

Advantages  Cheap and user efficient 
 Provision of climatic variables at 

point-scale  
 Unavailable RCM variables can be 

derived 
 Other regions can apply it easily 
 Has acknowledged statistical 

measures and standards 
 Includes observations into method 

directly 

 Responses are 
based on 
processes that are 
consistent  
physically  

 GCM scale 
output data has 
finer resolutions  

Disadvantages  Needs long and reliable observed 
historical data series for calibration 

 Depends on choice of predictors 
 Non-stationarity in the predictor-

predictand relationship 
 Does not include climate system 

feedbacks  
 Affected by biases in underlying 

GCM’s 
 Domain size, climate region and 

season affects downscaling skill 

 Intensive 
computationally 

 Limited number 
of scenario 
ensembles 
available 

 Depends on 
GCM boundary 
forcing 
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CHAPTER THREE 

METHODOLOGY 

3.1  Introduction 

This chapter outlines and shows the materials and methods used in this study. This 

includes the means by which the researcher was able to assess the study area and 

compile data for analysis. This study is based on secondary data. 

 

3.1.1  Description of Study Area 

Malaba River catchment is part of the Lake Kyoga basin which is one of the eight 

major surface water basin delineations for Uganda. The area considered for the study 

as the Malaba River catchment covers about 1604.4 km2 with approximately an 

altitude of 1077 meters above the sea level and the centre at 34.2o East and 0.62o 

North. The river has its origins on the slopes of Mount Elgon on the border between 

Uganda and Kenya and flows through the districts of Mbale, Tororo and Pallisa 

before finally discharging into Lake Kyoga. The study area has one weather station 

(Tororo) within its boundary with Mbale and Bungoma outside its boundaries as 

shown in Figure 3.1. 

 

Due to insufficient rainfall stations with sufficient data, rainfall data from Mbale 

station was replaced with SWAT station whose data was downloaded from 

globalweather.tamu website.  
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Figure 3.1:  Location map of Malaba River catchment 

 

3.2  Data Collection 

Some of the data were collected from responsible ministry’s in Uganda and websites 

as presented in the Table 3.1. 
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Table 3.1:  Data acquired from the respective ministry’s and websites 

Sn Data type Stations/Locations Source, (Period/Age) Resolution Data Format 
Spatial Temporal 

1 Rainfall 3 stations  MWE (1980-2014) Point  Daily (mm) Text file  

2 Temperature 1 station MWE (1980-2014) Point Daily (0C) Spreadsheet  

3 Flow 1 station MWE (1980-2014) Point  Daily (0C) Spreadsheet  

4 DEM Malaba river sub-basin USGS STRM-DEM (2009) 90 x 90 m N/A Geotiff tiles 
5 Landuse Africa Africover Land cover 

Classification and Natural 
Resources services, FAO 
(2009) 

1:250,000 N/A Raster 

6 Soil data Uganda Southern Africa database 
for soil and terrain 
developed by International 
Soils Reference and 
Information Centre, ISRIC 
(2005) 

1:2,000,000 N/A Raster 

7 HADCM3, 
HADGM & 
EMPH5 models 
(A1B & A2) 

World IPCC4 (CMIP3) from  
(2020-2050) 

25 km Daily Time 
series 

Text file  

Note; MWE-Ministry of Water and Environment, IPCC-Intergovernmental Panel on Climate Change 
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3.3  Modelling Framework for the Study  

Methods used in this study involved the following procedures: data analysis, downscaling of future climate variables for selected 

scenarios, rainfall-runoff modelling and analysis of simulated stream flow (2020-2050) as shown in Figure 3.2 below. 

 

 
 
Figure 3.2:  Modelling framework of study 
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3.4  Data Preparation and Processing 

3.4.1  Rainfall Time Series 

Rainfall daily time series for Tororo (1980-2010), Mbale (2002-2014) and Bungoma 

(1980-2004) stations were collected from the Uganda National Metereological 

Authority. These data were used for understanding the rainfall patterns and trends 

within the catchment. Mbale data was not used during the preliminary analysis 

because it has a significant 85% data gaps. 

 

Table 3.2:  Available rainfall stations in Malaba River catchment 

Name Longitude Latitude Elevation Period % missing 
Mbale 34.167 1.067 1127 2002-2014 85 
Tororo 34.160 0.683 1170 1980-2010 9 
Bungoma 34.560 0.580 1400 1980-2004 0 
ID11344 34.375 1.093 2150 1980-2004 0 

 

It is common to find gaps in metereological data and these are caused by vandalism 

and malfunctioning of equipment and several other factors. Table 3.2 shows that 

Mbale, Tororo and Bungoma have missing data with 85% (2002-2014), 9% (1980-

2010) and 0% (1980-2004) respectively.  

 

A timeline in Figure 3.3 was created to display the missing gaps of the rainfall 

stations in and outside the catchment. 
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Figure 3.3:  Timeline of available rainfall stations in Malaba River catchment 
 

A common study period of 1980-2004 was chosen for the stations i.e. Tororo, 

Bungoma and SWAT station for calculating the mean areal rainfall of the catchment. 

Therefore, a preliminary rainfall data analysis was carried out based on these three 

stations only i.e. Tororo, Bungoma and ID11344. 

 

3.4.2  Stream Flow Time Series Data 

This data is from the Tororo flow gauging station and the recorded data is from mid 

1992 to mid 2015. From the below flow diagram, it is shown that there is missing 

data in 1992, 1996, 2006 and 2015. The high peaks are in 1998 and 2010 with a flow 

of 49 m3/s and 50.4 m3/s respectively. 
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Figure 3.4:  Stream flow time series of Malaba River  
 

3.5  Data Analysis 

3.5.1  Baseline Rainfall Seasonality 

It is known that rainfall as a climatic parameter has temporal and spatial variations 

and therefore it is important to be informed on the rainfall seasonality in the 

catchment. This is basically carried out to investigate the variations in rainfall 

regimes over the years. To illustrate the mean monthly variations of the rainfall, the 

data was first pre-processed to monthly time series and means were calculated over 

each stations time period. Histogram plots were then produced in Microsoft Excel to 

display the patterns of the rainfall for the respective stations. 

         (3.1) 

Where: 

i is number of years 

j is the respective month (j=1, 2, …., 12) 
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3.5.2  Areal Rainfall 

This was computed to determine the average precipitation received by the entire 

catchment. The best method used depended on the type of data. Thiessen Polygon 

method was chosen because the rainfall stations are few. It is also known as weighted 

mean method. Rainfall varies in both intensity and duration and is not uniform over 

the entire basin or catchment. Therefore recorded rainfall of each rain gauge is 

weighted in relation to the polygon area, it represents using the following equation; 

         (3.2) 

 

Where:  

P stands for areal rainfall (mm),  

P for rainfall gauging station data (mm),  

A for area corresponding to the particular rainfall gauging station (Km2),  

A for total area covering all rainfall gauging stations (Km2),  

n is the number of Thiessen polygons. 

 

3.5.3 Trend Analysis 

Trend analysis is basically done to determine whether the change in the annual 

rainfall throughout the last years is significant or not and to ensure that the selected 

period represents the historic rainfall regime in the country. Time series of each 

rainfall station were analysed for trend using two tests i.e. Mann Kendall and Sen’s 

slope. To illustrate annual climatological and hydrological variables, the data was 

first pre-processed to annual time series. Plots were then produced as a simple 
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approach to trend detection and in each plot, a trend line was fitted. The study used 

trend analysis software for Mann-Kendall test (Chiew and Siriwardena, 2002) and 

MAKESENS 1.0 (Salmi et al., 2002) for the Sen’s slope estimator for linear 

regression analysis. In producing visualizations of the data, Microsoft Excel software 

was used.  

 

3.5.3.1 Mann-Kendall Test 

Mann-Kendall test was used to analyze the trend in the time series data. This non-

parametric rank based method is mostly used to evaluate the significance of 

monotonic trends in hydroclimatic time series (Salmi et al., 2002). It does not 

assume data to have any form of distribution form hence is as influential as other 

counterparts.  

 

The test is as follows; Assuming X1, X2, . . ., Xn be a series of data over a time 

period, Mann proposed that H0, the null hypothesis be tested and the data comes from 

a series with identically distributed and independent variables. Over time, the data of 

the H1, the alternative hypothesis, follows a monotonic trend over time. Under H0, 

the Mann–Kendall test statistic is,  

               (3.3) 

Where;  

                (3.4) 

Under Ho, statistic is roughly distributed normally when n ≥ 8, then both the mean 

and variance are zero as shown below: 
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                (3.5) 

As a result, Z statistics that are standardized go after a normal distribution: 

                (3.6) 

 

When the computed Z value is greater than the critical then there is a trend (Arnold et 

al., 2012).  

A positive value of Zs means an increasing trend while a negative value means a 

decreasing trend. Statistical trends are commonly assessed at the 5% significance 

level (Salmi et al., 2002). 

 

3.5.3.2 Sen’s Slope Estimator  

Trend magnitudes were determined using the Theil-Sen Approach (TSA) (Salmi et 

al., 2002) so as to confirm and map trends detected by the Mann-Kendall method. 

The TSA is recommended because it is more robust to outliers as opposed to other 

parametric tests such as linear regression. The slope estimator (β) is the median over 

all pairs of points in the time series (Salmi et al., 2002) 

                  (3.7) 

 

j = 2, 3… n         
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3.5.4 Stream Flow Response to Rainfall 

Hydrological processes are a sign of collective effects of climate, vegetation and soil, 

resulting in changes of streamflow at the basin scale. Changes in the amount of water 

flow from Malaba River have been attributed to climate change among other factors. 

To understand the influence of climate change on streamflow, an investigation of the 

stream flow response to historic climate needs to be carried out. A common time 

period for the streamflow and climate data was chosen i.e. 1992-2004. To illustrate 

this response, rainfall and stream flow data was pre-processed to mean monthly time 

series. In producing visualizations of the data, Microsoft Excel was used.  

 

3.6  Projection of Climate Change Variables from 2020-2050 

3.6.1 Downscaling of Future Climate 

There are two downscaling methods namely dynamic and statistical. At small and 

large scales, the links between the climates of dynamic techniques are based while 

statistical downscaling methods use relationships between locally observed weather 

variables and atmospheric variables at large scale. Statistical method was used for 

this research because it derives local scale data from larger scale using random and 

or deterministic functions (Salathe et al., 2008) 

 

The LARS-WG model was used for predicting the future climate in this study 

(Semenov and Barrow, 2002). It has been applied successfully in several similar case 

studies (Mwiturubani et al., 2010). 
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3.6.2  LARS-WG Model Description 

LARS-WG uses semi-empirical distributions for both wet and dry lengths day series, 

daily rainfall and solar radiations as described in (Semenov and Barrow, 2002).  

 

The simulation of rainfall event is modeled as varied wet and dry series, where a wet 

day is a day with rainfall > 0 mm. The duration of each series is randomly chosen 

from the wet month taking into consideration when the series starts. When the 

distributions are being determined, the month in which observed series start is also 

allocated. The rainfall value generated for a wet day for a particular month is not 

related or linked to the duration of the wet period or the amount of rainfall on past 

days.  

 

Temperature at daily time step is considered a random process (evolving with time) 

with averages and variances of a wet or dry day. It is used in simulating the same 

process is as presented in Hayhoe, (2000). Order 3 of the Fourier series models the 

seasonal averages and variances and their residuals are rounded off by a distribution 

that is normal. The average Fourier series is adjusted to the observed average values 

monthly but before adjusting the variance of the Fourier series, the observed monthly 

variances are adjusted first to offer a likely daily mean variance by eliminating the 

likely effects of a month’s mean changes. Using the already obtained mean for the 

fitted Fourier series, the adjustment is calculated. Analysis of the time 

autocorrelation for temperature requires the observed residual which is obtained by 

eliminating the average observed data. For simplicity an assumption of both of these 

being constant annually is made and the average observed data is used. Residuals 
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from temperature have cross correlation pre-set at 0.6. Incase simulated minimum 

temperature is higher than simulated maximum temperature, the minimum 

temperature is replaced by the maximum less than 0.1. 

 

Many locations have showed that the solar radiation that is distributed normally at 

daily time step, is unsuitable for certain climates (Semenov and Barrow, 2002). 

Different distributions were used to describe solar radiation because it varies 

extensively on wet and dry days. Solar radiation is modeled differently from 

temperature and a calculated autocorrelation for solar radiation was concluded to be 

the same annually. LARS-WG uses sunshine hours as an option to solar radiation 

data. Sunshine hours may be used instead of solar radiation because LARS-WG has 

the ability to convert these automatically to solar radiation using the approach 

described in Taylor et al. (1986). 

 

3.6.3 Selection of Global Circulation Models 

There are many climate models that are free to the public for providing future 

climate change projections. All these models are mathematical ones hence they 

simulate global climate varying in sizes and scales. Using twenty-four global climate 

models under three major greenhouse gas emission scenarios (A1B, A2, B1), the 

forth assessment of the Intergovernmental Panel on Climate Change (IPCC) provides 

future climate change projections (Barker, 2007). Therefore the GCMs used in this 

study were selected randomly in LARS-WG model based on their inclusion in the 

IPCC’s Fourth Assessment Report (AR4) and also the availability of three emission 

scenarios.  
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Three GCMs were compared with observed data for rainfall and temperature to 

determine their accuracy in simulating the climate of the area. The GCM with the 

highest correlation efficiency with observed data was used for projecting climate for 

the respective variable i.e. precipitation and temperature from 2020-2050. 

 

3.6.4  Selection of Climate Scenario 

The Intergovernmental Panel on Climate Change (IPCC) defines a scenario as ‘an 

often basic depiction of how the future may develop based on a rational and inside 

consistent set of assumptions of driving forces and key relationships. The Special 

Report on Emissions Scenarios (SRES) has been widely used in climate change 

research and assessments in the past and was based on descriptive storylines that 

conveyed the general logic primarily the related quantitative descriptions of future 

economic, demographic, technology, and emissions trends. 

 

Based on economic and population growth the climate scenarios were selected. A1B 

predicts a future of very fast economic growth and a combination of technological 

developments, A2 predicts a future world of fair economic growth and a higher 

population growth and B1 predicts a convergent world with the same global 

population that peaks in mid-century and declines thereafter and B2 predicts a world 

in which the stress is on local solutions to economic, social, and environmental 

sustainability. 

 

For this study only A1B and A2 scenarios were considered because they explain the 

most “likely to happen” development paths i.e. medium and high development path 
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respectively. These scenarios have also already been used in Uganda for climate 

change studies (Jassogne et al., 2013). 

 

3.6.5  Generation of Projected Climate Variables 

Semenov and Barrow, (2002) developed the Long Ashton Research Station Weather 

Generator (LARS-WG) in 1997. This stochastic model is able to simulate future 

climate variation locally in response to climate change by outputs downscaled from 

AOGCMs outputs. Historical datasets are used as inputs into the model and data at 

daily time step of infinite lengths are produced. Three steps were carried out in the 

LARS-WG model to simulate the synthetic weather. These are site analysis (model 

calibration), Q-test (model validation) and Generator. 

 

3.6.6 Weather Generation 

The usual way of filling missing data is to use the data of a nearby station either 

using regression analysis or spatial interpolation. In some cases, the nearby stations 

have missing data hence their data cannot be used. This is one of the main constraints 

that led to the use of LARS weather generator model to fill in the missing data for 

better projection of future climate.  

 

Observed rainfall data for Tororo, Mbale and Bungoma stations were collected while 

maximum and minimum temperature was collected for only Mbale station. The 

temperature data for one station was used as a representation for the whole catchment 

since temperature does not vary much. 
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In this study, LARS-WG model ability to generate rainfall time series under limited 

data was analysed. The daily rainfall for Tororo, Mbale, Bungoma stations and 

temperature for Mbale station (1980-2010) were used for the model input and 30 

years of synthetic data were generated. Comparisons between the observed and 

simulated data were based on the monthly statistics such as mean difference and 

variance. 

 

3.6.7  LARS-WG Model Calibration  

LARS-WG model calibration is also known as site analysis. It was calibrated using 

the historical observed data i.e. precipitation, maximum and minimum temperature of 

Tororo station for 1980-2010 time period. To determine the statistical characteristics 

of the results, they were analysed. The results are stored in two files. The parameter 

file (*.wg) contains the parameters required by LARS-WG to generate the synthetic 

weather time series and the statistic file contains the seasonal frequency distributions, 

which is used in the Q-test process also known as model validation.  

 

3.6.8  LARS-WG Model Validation 

Once calibrated was done using the observed data for a station, Q-test (validation) 

was carried out to confirm the performance of the model. Synthetic weather data is 

generated with the same statistical characteristics as observed data based on the 

parameter files that were derived during calibration. Model validation helps to verify 

the capability of the model to generate synthetic data. 
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3.6.8.1 Analysis of the LARS-WG Calibration and Validation Results  

When the site parameters are calculated, LARS-WG automatically creates a tst-file 

which contains results of statistical tests. The Kolmogorov-Smirnov (K-S) test is 

performed for testing equality of the seasonal distributions for daily rainfall and 

temperature data determined from observed and downscaled data. The test calculates 

a p-value, based on which the modeler uses to accept or reject the hypothesis. 

Therefore the modeler is able to determine the difference between the observed and 

simulated variable if any.  

 

3.6.9  Analysis of Future Climate Scenarios 

3.6.9.1 Analysis by Trend 

The time series of projected climate for each scenario was analysed for trend using 

Mann-Kendall method and Theil Sen’s slope was used to determine the magnitude of 

the trend. The data was pre-processed to annual time series and Microsoft excel was 

used for visualization purposes. The results of this analysis were based on the 5% 

significant level. 

 

3.6.9.2 Analysis by Changes 

The time series of projected climate for each scenario was analysed for changes 

against a baseline period of (1980-2004) for both areal rainfall and temperature. The 

areal rainfall change was expressed in percentage while the temperature change was 

expressed as a difference. The changes were done on a monthly basis using 

Microsoft excel.  

 



 
 

47 
 

3.7  SWAT Model Setup 

ArcSWAT was used in the study through ArcGIS 9.3 user interface. The first step 

was to delineate the watershed using the DEM. The sub basins (15) were created as 

well as the drainage system of the study area. From the soil, slope and soil maps, the 

hydrologic response units (HRUs) were generated (85 HRUs). The SWAT model 

was selected to simulate rainfall runoff of Malaba river sub basin from 1992 to 2004. 

The meteorological input data was; maximum temperature, minimum temperature, 

and precipitation. The meteorological and stream flow data sets were prepared as dbf 

files and uploaded into SWAT. The available data for both meteorological and 

stream flow data allows analysis period of 1992 to 2004. Then the DEM, land use, 

soil, rainfall, temperature data and water use data were also inserted in the model. 

Due to availability of only rainfall and temperature data, the SWAT model was set to 

compute potential evapotranspiration using Hargreaves method.  

Figure 3.5 provides a schematic view of SWAT setup as well as data inputs. 
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Figure 3.5: Schematic view of SWAT model 
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i. Digital Elevation Model (DEM) 

The DEM was used for; delineating the watershed, creating the sub-basins, stream 

network and longest reaches generation, calculating terrain slope and channel slope. 

The DEM used was a 90 X 90 m ASTERGDEM raster. Figure 3.6 of the DEM 

shows that, the Northern (upper) side of the catchment has an elevation of 4298 and 

the southern has 1086 masl. 

 
 
Figure 3.6:  DEM of Malaba River catchment 
 

ii. Landuse Map 

Land use map of 1998 was used in this study. SWAT uses the land use map as either 

a shape file or a raster file. When it is a shape file, the SWAT model converts it to 

raster file. Land use data was classified so as to determine the extent of the different 

classes during the simulations of hydrological modelling. Land use change was not 

considered in simulation of future stream flow under changing climate, this set-up 
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will give separate impact of climate change on hydrology (setting constant land use 

as for the baseline period). However, this classification is coded in SWAT during 

Land use/soil/slope definition. For example, urban categories were given Residential-

URBN, Savannah-SAVA, Farmland-Agricultural Land Generic (AGRL), Forests-

Broadleaved Trees Forest (FOEB), Bushes-Range Bush (RNGB), Grassland-GRAS, 

and Plantations-Agricultural Land Row Crops (AGRR). The map was projected to 

Arc_1960_UTM_Zone_36N. 

 

 
 
Figure 3. 7:  Spatial distribution of land use in the sub-basin  
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Table 3. 3:  Percentage coverage of Land uses in Malaba River catchment 

Sn Land use Area (km2) Percentage (%) 
1 Farmland 36.256 36% 
2 Built-up area 6.802 7% 
3 Impediment 2.133 2% 
4 Forests mixed 17.314 17% 
5 Plantations 33.342 33% 
6 Shrub land 1.574 2% 
7 Savannah 2.85 3% 

Total 100.271 100% 
 

Majority of the landuse in the catchment are Farmland, Banana Plantations, and 

Forests with 36%, 33% and 17% land use as shown in the above table. This therefore 

is an indication that the catchment lies in rural area. 

 

iii. Soil Map 

Soil was classified into texture form from generic names using the Africa User - Soil 

Definitions provided for Southern Africa but developed by International Soils 

Reference and Information Centre, ISRIC in 2003. Most of the soil in the sub-basin 

is sandy-clay-loam and loam (Table 3.5 and Fig. 3.8). Loam soil is found at top of 

the catchment, whereas sandy-clay-loam is found downstream of the catchment. This 

therefore means that there might be a higher retention of water downstream of the 

sub-basin rather than at the centre. 
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Figure 3. 8:  Soil map of Malaba River catchment 
 

Another observation from soil texture is that there is no pure sand in the sub-basin; 

therefore this suggests that possibilities of high level of channel erosion that is likely 

to change the channel dimensions are minimal. 

 

iv. Slopes Map 

The slopes were classified into four categories- 0 – 5, 5 - 15, 15 – 25 and 25 – 9999.  
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Figure 3. 9: Classes of slopes in Malaba River Catchment 
 

It can be seen that the slopes are mostly within the 0 to 30 range. 

 

Table 3. 4:  Percentage (%) of the different slope ranges 

Sn Slope Range Area (Km2) Percentage (%) 
1 0-5 613.22 40% 
2 5-15 638.24 42% 
3 15-25 144.80 10% 
4 25-99 123.51 8% 

Total 1519.77 100% 
 

 

v. HRU definition 

The threshold percentages for the HRU definition were set as 20% land use, 10% soil 

and 20% slope. These are default thresholds suggested by SWAT manual. The 
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threshold percentages are areas which SWAT considers (exceeding or equal) in order 

to form a HRU over the total area of the sub-basin. They are derived by looking at 

the distribution of land use, slope and soil within the sub basins. 

 

3.8  SWAT Parameter Sensitivity Analysis and Calibration 

The first step of calibration is to determine the parameters related to the process to be 

modelled. The second step is to determine how these parameters affect the processes 

being modelled. This is termed sensitivity analysis. Sensitivity analysis can either be 

local or global. Local sensitivity is when one parameter is changed at a time and 

global is when all values are changed at once. Between the two, global is better as 

one parameter depends on the other however; it needs a large simulation (Arnold et 

al., 2012). Sensitivity analyses help to avoid over parameterization (Muys et al., 

2004)  

 

The Malaba River Catchment’s SWAT model was then executed to analyze the 

sensitivity of model parameters so that calibration could concentrate to the ones 

which affect the model flow behaviour. This sensitivity analysis used observed flow 

data in ArcSWAT. 

 

Model calibration is a procedure of changing the parameters in the model in order to 

represent the characteristics of the catchment in the model. Calibration is either 

manual, automatic or semi-automatic. Manual calibration is laborious when there are 

many parameters (Arnold et al., 2012). However it can be used to refine calibration. 
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Auto calibration depends on the upper and lower limits parameters and it is powerful 

in SWAT when combined with manual calibration.  

 

3.8.1  Model Calibration 

Calibration and validation for SWAT 2009 was done outside the ArcSWAT model. 

SWAT Calibration Uncertainty Procedure (SWAT-CUP) was therefore used. 

SWAT-CUP links SWAT to the following procedures; Sequential Uncertainty 

Fitting (SUFI-2), Parameter Solution (ParaSol), Generalized Likelihood Uncertainty 

Estimation (GLUE), Markov chain Monte Carlo (MCMC) and Particle Swarm 

Optimization (PSO). SUFI-2 and GLUE account for uncertainties in driving 

variables (rainfall), conceptual model parameters and measured data and ParaSol and 

MCMC account for model parameter uncertainty (Arnold et al., 2012). MCMC is the 

most complicated procedure of them all and requires a lot of simulations (Abbaspour, 

2015). In Parasol, Shuffle Complex (SCEUA) algorithm is used to minimize the 

difference between observed flow and simulated flow (Lo and Koralegedara, 2015). 

In the current study, the model warm up period is 4 years (1988-1991) and the 

calibration period is from 1992 to 1999 and the validation period is from 2000 to 

2004. The commonly used optimization objective functions are Nash-Sutcliffe 

Efficiency (NSE), Root Means Square Error (RMSE) and Percentage bias (PBias) 

and coefficient of determination (R2). However, Moriasi et al. (2007) recommend 

three statistics coefficients; NSE, PBias and RMSE. These are statistical tests to 

check the relationship between the observed and the simulated stream flows. Moriasi 

et al. (2007) propose NSE be above 0.5 for hydrologic and pollutant evaluations on 

both daily and monthly time step.                                                           
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3.8.2  Validation 

Validation is a process of checking whether the calibrated model can reproduce 

sufficient simulations. Similar statistical functions used in calibration to determine 

model efficiency were also used for validation. It was done by time series dataset 

which were not used in calibration. Arnold et al. (2012) suggests that both datasets 

used for calibration and validation should include wet and dry years but this is not 

possible to achieve. However, Santhi et al. (2008) recommends the wet period used 

for calibration to have high runoff events. Currently, there are no guiding principles 

for separating data for calibration and validation but guidelines should take into 

account the minimum length of period required for calibration and validation. The 

validation was done from 2000 to 2004 using same parameters obtained from 

calibration step. 

 

3.8.3  Uncertainties 

There are three sources of uncertainties associated with hydrologic modelling and 

these are; uncertainties in the observed data, data used in calibration and finally data 

used in the conceptual model and model parameters. 

 

In SUFI-2 the uncertainties are quantified by the p-factor which is the percentage of 

data bracketed by the 95% prediction uncertainty (95 PPU). The 95 PPU is 

calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output 

variable, disallowing 5% of the very bad simulations (Abbaspour et al., 2015). 
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Another factor used to quantify the uncertainty is the r-factor, which is the average 

thickness of 95% probability band. SUFI-2 attempts to bracket most of the measured 

data with the smallest r-factor variable (Abbaspour et al., 2015). When the r-factor 

and p-factor are within required limits, other statistical analysis can be used to 

further check the consistency between the measured and observed reading. 

 

3.8.4  SWAT Model Key Equations 

a) Potential Evapotranspiration (PET) 

The potential evapotranspiration (PET) was calculated using the Hargreaves method 

because data is readily available. The equation used was;    

λE0 = 0.0023 x H0 x (Tmx – Tmn) 0.5 x (Tav + 17.8)             (3.8) 

Where: λ is the Latent heat of vaporization (MJ Kg-1) 

E0 is the Potential Evapotranspiration (mmd-1) 

H0 is extraterrestrial radiation (MJ m-2 d-1) 

Tmx is maximum temperature for a given day (0C) 

Tmm is minimum temperature for a given day (0C) 

Tav is mean air temperature (0C) 

 

b) Surface runoff generation 

The SCS curve number equation was used to estimate the amount of runoff under the 

varying landuse and soil types. The SCS equation is;  

Qsurf = )2                      (3.9) 

Where: Qsurf is accumulated runoff (mm) 
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Rday is rainfall depth for the day (mm) 

 

c) Water balance 

This equation is behind all the processes that occur in the watershed (refer to page 

21). 

 

d) Surface runoff routing 

This equation was used to calculate the amount of surface runoff that is discharged 

into the main channel. 

Qsurf = (Q1
surf + Qstor) x (1- exp ( ))      (3.10) 

 

Where: Qsurf is the amount of surface runoff discharged to the main channel (mm) 

Q1
surf is the amount of surface runoff generated in the subbasin (mm) 

Qstore is surface runoff stored or lagged from the previous day (mm)  

Surlag is the surface runoff lag coefficient  

Tconc is time of concentration for the subbasin 

 

e) Water Balance of the reach 

This equation was used for the water storage in the reach at the end of the time step. 

Vstored2 = Vstored1 + Vin – Vout – tloss – Ech + div + Vbnk          (3.11) 

Where; Vstored2 is volume of water in the reach at the end of time step (m3) 

Vstored1 is volume of water in the reach at the beginning of time step (m3)  

Vin is volume of water flowing into the reach during the time step (m3)  
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Vout is volume flowing out of the reach during the time step (m3) 

Ech is evaporation from the reach for the day (m3) 

div is volume of water added or removed from the reach for the day through diversion 

(m3) 

Vbnk is volume of water added to the reach via return from the bank storage (m3) 

tloss is the volume water lost through transmission (m3) 

 

3.9  Analysis of Simulated Surface Flow for Climate Scenarios 

This was achieved by comparing the simulated surface flow of the A1B and A2 

scenarios for period of 2020-2050 with the baseline period.  

 

3.9.1  Selection of Baseline Period 

According to the World Meteorological Organization, a baseline period for any 

climate change studies should be of atleast 30 year period. Unfortunately observed 

data for both flow and climate is not sufficient for all the stations in the Malaba river 

catchment for conducting climate change studies. Therefore observed climate data 

was used to create synthesized data using LARS-WG which was used to simulate 

surface flow for 1986-2015 period.  

The 30 year period used in this analysis will be fitting to signify the impact of 

climate change because the variability of water availability within a decade is not 

only impacted by climate change within that decade, but also the decade before.  
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3.9.2  Analysis by Changes 

The time series of projected climate for each scenario was analysed for changes 

against a baseline period of (1986-2015). The changes were done on a monthly basis 

using Microsoft excel. This was mainly to determine whether there is a shift in the 

hydrological season. 

 

3.9.3  Simulated Flow Variation Assessment 

The simulated flow was analysed using Flow Duration Curve. Flow Duration Curve 

is a cumulative frequency curve that shows the percent of time during which 

specified discharges were equaled or exceeded in a given period. Therefore it was 

developed for flow variation assessment with daily flows for simulated flow (2020-

2050) which was compared to the baseline flow period (1980-2015). To prepare the 

FDC, the daily flows for the respective period were ranked from the highest to the 

lowest flows during which the flow equaled or exceeded the specified percentiles 

was computed.  
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1  Introduction 

This section summarizes the results of this study and provides explanatory analysis 

to highlight key findings. These results were generated following the methods 

highlighted in Chapter Three. The results are first presented on a preliminary analysis 

of the metereological and hydrological nature of the study area. This was mainly to 

have a full understanding of the hydroclimatic trends for the period of 1992-2004 in 

Malaba river catchment. 

 

The future climate variables (rainfall and temperature) of the study area were 

projected for the period 2020-2050 for A1B and A2 climate scenarios using the three 

randomly selected GCMs from LARS-WG model i.e. HADCM3, HADGM and 

EMPH5. SWAT model was used to simulate streamflow of the projected climate in 

the respective climate scenarios. 

  

For investigating hydroclimatic trends for both baseline analysis and projected 

period, the non-parametric Mann-Kendall method was used to test the existence of a 

trend in the annual time series. Sen’s slope estimator was also applied to estimate the 

magnitude of the trend. This was attained by the application of trend analysis 

software and statistical template, Makessens 1.0 developed by the Finnish 

Metereological Institute (FMI). 
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4.2  Baseline Analysis 

4.2.1 Rainfall Seasonality Analysis 

Figure 4.1 shows bimodal rainfall patterns for both Tororo and Bungoma stations. 

Tororo station registers April and May as the wettest months with mean monthly 

rainfall of approximately 200 mm followed by October and November. The long 

rains are received between March and May while the short rains are received 

between October and November. 

  

 

Figure 4.1:  Mean Monthly Rainfall for stations in Malaba River catchment 
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ID11344 station displays a bimodal rainfall patterns with the wettest month being 

registered in May and April and the short rains being registered in January and 

February. 

 

Bungoma station is located on the Kenyan side of the study area. It displays a mean 

monthly rainfall of approximately 84 mm. It has an annual rainfall of approximately 

1440 mm which is 84 mm less than what Tororo contributes. April and May are the 

wettest months with a mean monthly rainfall of approximately 225 mm. The long 

rains are received between March and May while the short rains are received 

between October and November. Therefore the rainfall registered at the Tororo and 

Bungoma stations displays an almost similar pattern with a difference in received 

rainfall.  

 

 

Figure 4.2: Total annual rainfall for stations 
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Figure 4.2, displays that ID11344 station has a higher total annual rainfall as 

compared to Bungoma and Tororo station. This is attributed to the fact that it is 

satellite data and not observed rainfall data. Bungoma station displays a higher 

annual rainfall in 1981-82, 1985, 1996-1999 as compared to Tororo station and 

Tororo station displays a higher annual rainfall in 1991-1995 and 2000-2002.  

 

4.2.2  Areal Rainfall  

Table 4.1, displays the weighted area of each rainfall station in Malaba River 

catchment. Mbale station was not included in the calculation of the areal rainfall 

because it had 85% of missing data and also because it didn’t share the same 

common period (1980-2004) as the other two stations. It was however replaced with 

SWAT station (ID11344) whose study period is from 1980-2004 

 

Table 4. 1:  Rainfall contribution area of the stations 

No. Stations % of Rainfall area contribution 
1 Tororo 56 
2 Bungoma 17 
3 ID11344 27 

 

Therefore the calculated annual mean areal rainfall (1980-2004) is 1,751.69 mm for 

the three stations. 
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Figure 4.3: Mean areal rainfall of Malaba River Catchment 
 

Figure 4.3, displays that the catchment has a bimodal rainfall pattern with a mean 

monthly rainfall of approximately 110 mm. The long rains are received between 

April and May while the short rains are received between December and February.  

 

4.2.2 Data Trend Analysis 

Annual rainfall data for Tororo station (1980-2010), Bungoma station (1980-2004), 

ID11344 (1980-2004), Mean Areal rainfall (MAR) (1980-2004) and flow data (1992-

2004) was tested for trend to investigate the existence of a long term trend in the 

basin and the magnitude through Mann-Kendall and Sen’s slope estimator 

respectively. The tests were done at 5% level of significance and the results are 

presented in Table 4.2. 
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Table 4.2:  Trend results for annual rainfall and flow for Malaba River 

catchment 

Station N (years) Mann-Kendall Sen’s slope Trend 

Tororo 30 + 0.470 1 

Bungoma 24 - 0.489 0 

ID11344 24 - 0.087 0 

MAR 24 + 1.632 0 

Flow gauge 22 + 1.523 1 

Note; (+) Mann-Kendall - Increasing trend, (-) Mann-Kendall – Decreasing trend, 1 
– Significant trend, 0 – Non significant trend 
 

The above results were illustrated in Figures 4.4-4.7, fitted with trendlines. 

 

a) Rainfall 

  

Figure 4.4:  Annual rainfall variations of Tororo and Bungoma stations 
 
 

 

 



 
 

67 
 

 
 
Figure 4.5:  Annual rainfall variation for ID11344 stations 
 

From Figure 4.4 and 4.5, the annual rainfall has a significant increasing trend at a 

rate of 0.47 mm per year for Tororo station. Bungoma and ID11344 stations have no 

significant decreasing trends at a rate of 0.489 mm per year and 0.087 mm per year 

respectively.  

 

b) Areal rainfall 

 

Figure 4.6:  Annual areal rainfall trend for Malaba River catchment 
 

Figure 4.6, displays that the lowest annual areal rainfall was received in 1980 and the 

highest in 1988 with 769 mm and 2269 mm respectively. The annual rainfall has a 

non significant increasing trend at a rate of 1.632 mm per year.  
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c) Stream flow  

 

Figure 4.7:  Annual stream flow for Malaba River 
 

Figure 4.7, displays that the lowest flow was registered in 1993 and highest in 2010 

with 8.4 m3/s and 25.7 m3/s respectively. Malaba River has a significant increasing 

trend magnitude of 1.523 m3 annually. This therefore suggests that the increasing 

mean areal precipitation explains the increasing trend of the streamflow.  

 

4.2.3  Stream Flow Response to Rainfall 

To understand the influence of climate change on streamflow, an investigation of the 

stream flow response to historic climate was carried out. A common time period for 

the streamflow and climate data was chosen i.e. 1992-2004. To illustrate this 

response, rainfall and stream flow data was pre-processed to mean monthly time 

series. In producing visualizations of the data, Microsoft Excel was used.  
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Figure 4.8:  Stream flow response to mean areal rainfall from 1992-2004 
 

From Figure 4.8, it is displayed that when there is an increase in rainfall, the stream 

increases too. However, it can be seen that there is slight lag time in streamflow 

response to rainfall and this can be attributed to other factors such as land use. It can 

be concluded that indeed fluctuations in rainfall have an impact on streamflow 

therefore the historic climate change has contributed to fluctuations in stream flow. 

 

4.3  Projection of Climate Change Variables for Malaba River catchment 

(2020-2050) 

4.3.1  Weather Generation 

It is common to find gaps in weather data and this arises from many causes. LARS 

weather generator was used to fill gaps for Tororo (rainfall) and Mbale (temperature) 

stations data before any projection could be done. The daily rainfall data for Tororo 

(1980-2004) was used for the model input and 30 years of synthetic data were 

generated. The daily maximum and minimum temperature for Mbale station only 
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was generated for 30 years and taken as a representation for the whole catchment. 

Comparisons between the observed and simulated data were based on the monthly 

statistics such as mean difference and variance. The ability of LARS-WG model to 

generate rainfall and temperature time series under limited data is discussed below. 

Table 4.3 and 4.4 show output data from the statistical tests, showing the comparison 

of the observed & simulated data and variances with those of 30 years of synthetic 

data generated by LARS-WG for Tororo, Mbale and Bungoma stations. 

 

Table 4. 3: Rainfall for Tororo, Mbale and Bungoma stations 

Months J F M A M J J A S O N D 
Tororo 

Obs.mean 90 79 142 219 193 78 76 126 113 160 164 86 
Obs.var 58 71 52 81 65 44 44 5 48 66 72 71 
Sim.mean 93 73 152 249 162 82 76 122 131 172 180 75 
Sim.var 59 48 54 79 60 39 34 68 44 76 87 52 
Note; Obs-Observed data, Sim-Simulated data, var-variance 

 

Table 4. 4:  Temperature for Mbale station 

Maximum temperature for Mbale station 
 Months J F M A M J J A S O N D 
Obs.mean 31 32 31 29 29 29 28 28 29 29 29 30 
Obs.var 0.5 0.6 0.4 0.5 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.5 
Sim.mean 31 32 31 29 29 28 28 28 29 29 29 30 
Sim.var 0.4 0.5 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.5 

Minimum Temperature 
 Months J F M A M J J A S O N D 
Obs.mean 17 17 17 18 18 17 17 17 17 17 17 17 
Obs.var 0.2 0.3 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 
Sim.mean 17 17 17 18 18 17 17 17 17 17 17 17 
Sim.var 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 
Note; Obs-Observed data, Sim-Simulated data, var-variance 
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It can be seen from the above table that both the mean and variance of the daily 

observed and simulated data are in close range hence LARS-WG generated good 

time series data. Therefore LARS-WG was used to fill the daily data gaps observed 

at Tororo and Mbale stations in (1980-2004) time period. The variance which 

indicates the deviation and the mean for the central value of the monthly data was 

obtained for both the observed and simulated data.  The above data was further 

summarized in graphs for proper visualization and analysis. The Figures 4.8-4.9 

display the comparisons of observed and simulated mean and variance for rainfall, 

maximum and minimum temperature for the three stations. 

 

a) Rainfall 

 

Figure 4.9:  Comparison of the mean monthly rainfall at Tororo station
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b) Temperature 

Figure 4.10:  Comparison of the mean monthly temperature at Mbale station 
 

4.3.2  LARS-WG Model Calibration and Validation  

Statistical tests were created after the site parameters were calculated. The statistical 

tests which are K-S test and p- test assess the ability of LARS-WG to generate 

variety of weather statistics accurately. If p-value is very low and below the 

significance level of 0.05, then the generated simulated climate is unlikely to be the 

same as the ‘true’ climate (Semenov, 2010). Table 4.5 presents the (K-S) and p-test 

results indicating the accuracy of LARS-WG model. 

 

Table 4.5:  Results from comparing observed and downscaled data  

Type of data Station Parameters K-S test p-value Accuracy 

Observed 
(1980-2004)  

Tororo 
Rainfall 

0.59 0.99 Good 
ID11344 0.05 1.00 Very good 
Bungoma 0.13 0.94 Good 

Mbale Maximum Temperature 0.08 0.99 Good 
Minimum Temperature 0.08 0.99 Good 

Downscaled 
(2020-2050) 

Tororo 
Rainfall 

0.07 1.00 Very good 
ID11344 0.06 1.00 Very good 
Bungoma 0.11 0.92 Good 

Mbale Maximum Temperature 0.07 1.00 Very good 
Minimum Temperature 0.06 1.00 Very good 

Note; Fair-(0.05-0.1), Good-(0.1-0.8), Very good-(0.8 and above), for K-S and p-
values 
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The above results from statistical tests were for a significant level of 5%. It can be 

seen from the above table that LARS-WG generated climate that is most likely to be 

the same as the ‘true’ climate. This is an indication of the suitability of LARS-WG 

for the climate downscaling in Malaba River catchment.  

 

4.4 Generation of Future Climate Scenarios 

From the above analysis, it can be concluded that LARS-WG model shows good 

performance in generating projected daily rainfall, maximum and minimum 

temperature.  

 

In this study, the local-scale climate scenarios based on SRES A1B and A2 were 

simulated by the randomly selected three GCMs which are HADCM3, HADGEM 

and EMPH5 using LARS-WG (5.5) for the time period 2020-2050.  

 

4.4.1  Selection of GCM 

The gap filled data was compared with the downscaled data for each GCM and 

climate variable. R2 (Coefficient of determination) was used to determine the 

accuracy of the GCMs in projecting the climate for period of 1980-2004.  
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Table 4.6:  R2 of the GCMs between observed and downscaled data 

AIB Scenario 
Parameter HADCM3 HADGEM EMPH5 
Rainfall 0.37 0.66 0.56 
Maximum 0.39 0.46 0.53 
Minimum 0.49 0.25 0.62 

A2 Scenario 
Parameter HADCM3 HADGEM EMPH5 
Rainfall 0.3 0.54 0.5 
Maximum 0.45 0.55 0.56 
Minimum 0.3 0.34 0.44 

 

From Table 4.6, HADGEM has a higher correlation which is an indication that it has 

a good accuracy compared to the other GCMs in projecting rainfall while EMPH5 

has good projection accuracy for temperature. Therefore HADGEM was used for 

projecting rainfall at all the stations and EMPH5 was used for projecting 

temperature. 

 

4.4.1 Trend Analysis of Future Climate Scenarios 

The trend of the projected climate variables of all the selected GCMs was determined 

using Mann-Kendall method and the Theil Sen’s slope was used to determine the 

magnitude of the trend. The results of this analysis are based on the 5% significant 

level. The results of the trend analysis for the scenarios are summarized in Table 4.7 

and Table 4.8. 
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a) Areal Rainfall 

Figure 4.11:  Trend in mean areal rainfall 

 

From Figure 4.11, A1B scenario displays an increasing trend with magnitude of 0.34 

mm per year and A2 scenario displays an increasing trend with magnitude of 0.408 

mm per year. 

b) Maximum Temperature 

 

 

Figure 4.12: Projected annual maximum temperature of the Malaba River 
catchment 

 

Figure 4.12 displays that both A1B and A2 scenarios display a non significant 

decreasing trend with magnitude of 0.0040C. 
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c) Minimum Temperature 

  

Figure 4.13: Projected annual minimum temperature of Malaba River 
catchment 

 

Figure 4.13 displays that A1B scenario displays a non significant increasing trend 

with magnitude of 0.0010C per year and A2 scenario displays a non significant 

increasing trend with a magnitude of 0.0020C per year 

 

Table 4.7: Trend analysis results for A1B climate scenario (2020-2050) 

Climate variable GCM Mann-Kendall Sen’s slope Trend 
Aerial Rainfall HADGEM + 0.340 0 
Maximum Temperature EMPH5 - 0.004 0 
Minimum Temperature EMPH5 + 0.001 0 
Note; (+) Mann-Kendall - Increasing trend, (-) Mann-Kendall – Decreasing trend, 1 
– Significant trend, 0 – Non significant trend 
 

Table 4. 8:  Trend analysis results for A2 climate scenario (2020-2050) 

Climate variable GCM Mann-Kendall Sen’s slope Trend 
Rainfall HADGEM + 0.408 0 
Maximum 
Temperature 

EMPH5 - 0.004 0 

Minimum 
Temperature 

EMPH5 + 0.002 0 

Note; (+) Mann-Kendall - Increasing trend, (-) Mann-Kendall – Decreasing trend, 1 
– Significant trend, 0 – Non significant trend 
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From the above results, rainfall for both scenarios displays an increasing trend. 

Rainfall has a significant increasing trend of at least a magnitude of 0.419 mm 

annually and temperature has an increasing non-significant trend of at least 0.0010C 

annually. 

 

4.4.2  Change Analysis of Future Climate Scenarios 

The change in projected climate was determined by using the observed (1980-2004) 

as base period for both rainfall and temperature. Rainfall change was calculated in 

terms of percentage while temperature change was calculated in terms of absolute 

(0c). The results which were calculated in Microsoft excel are displayed and 

explained below. 

a) Rainfall 

Figure 4.14: Average monthly changes in areal rainfall for Malaba River 
catchment 

 

For A1B scenario, areal rainfall will increase by an average of 8% of the baseline 

monthly rainfall. For A2 scenario, areal rainfall will increase by an average of 18% 

of the baseline monthly rainfall (Figure 4.13). 
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a) Maximum Temperature 

Figure 4.15: Monthly changes in maximum temperature for Malaba River 
catchment 

 

For A1B scenario, maximum temperature will increase by atleast 0.20C monthly and 

for A2 scenario, maximum temperature will increase by atleast 0.30C monthly 

(Figure 4.15). 

 

b) Minimum Temperature 

Figure 4.16: Monthly changes in minimum temperature for Malaba River 
catchment 

 

For A1B scenario, minimum temperature will increase by 0.10C monthly and for A2 

scenario, minimum temperature will increase by atleast 0.20C monthly (Figure 4.16) 
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Therefore areal rainfall in the catchment will increase significantly by approximately 

2% per month and maximum and minimum temperature will not increase 

significantly. 

 

These results are supported by Niang et al. (2014) which shows that precipitation in 

Uganda will decrease in the months of June and July by the end of the 21st century, 

this is as a result of weakening Somali jet and Indian monsoon. Jassogne et al. (2013) 

also stated an increasing trend in maximum and minimum temperature over the next 

50 years starting from 2015. 

 

4.5 SWAT Modelling 

The SWAT model for Malaba River Catchment was built with a 90 m x 90 m DEM. 

The automatic delineation was carried out with an area of 6475.83 Ha and 15 sub 

basins and 83 HRU’s were generated.  

 

4.5.1 Sensitivity Analysis 

For this study, a sensitivity analysis was done in SWAT using observed data for 1000 

simulations. The 10 most sensitive parameters were used for calibration. The 

parameters are ranked from most to least sensitive  

 

Table 4.9 displays that the most sensitive parameter is CN2 which is the initial SCS 

runoff curve number for moisture condition. It is responsible for runoff generation 

and depends on factors such as; soil type, soil texture, soil permeability, land use 

properties etc. The second most sensitive parameter is SURLAG which is the surface 
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runoff lag time. It controls the fraction of the total water to get to the reach at any 

given day. The third sensitive parameter is ESCO which is the soil evaporation 

compensation factor. It allows for modifying the depth distribution used to meet the 

soil evaporation demand to account for the effect of capillary action. The forth 

sensitive parameter is Alpha_Bf which is the base flow alpha factor in days. The fifth 

most sensitive parameter is Ch_K2 which is the effective hydraulic conductivity in 

the main channel alluvium.  

 

Table 4.9:  Results of sensitivity analysis with observed flow 

Sn Parameter Description Rank 
1 Cn2 SCS runoff curve number factor 1 
2 Surlag Surface runoff lag time (days) 2 
3 Esco Soil evaporation compensation factor 3 
4 Alpha_Bf Base flow alpha factor (days) 4 

5 Ch_K2 
Effective hydraulic conductivity in main channel 
alluvium 5 

6 Ch_N2 Manning's value for the main channel 6 
7 Sol_Awc Available water capacity (mm H20/mm soil) 7 
8 Blai Max leaf area index 8 

9 Gwqmn 
Threshold water depth in the shallow aquifer for 
flow occur (mm) 9 

10 GW_Revap Groundwater "revap" coefficient 10 
11 Canmx Maximum canopy storage 11 
12 Sol_Z Depth from soil surface to bottom of layer 12 
13 GW_Delay Groundwater delay (days) 13 
14 Slope Average slope steepness 14 
15 Sol_K Saturated hydraulic conductivity (mm/hr) 15 
16 Slsubbsn Average slope length 16 

17 Revapmn 
Threshold water depth in the shallow aquifer for 
"revap" to occur (mm) 17 

18 Biomix Biological mixing efficiency 18 
19 Epco Plant uptake compensation factor 19 
20 Sol_Alb Moist soil albedo 20 
21 Sftmp Snowfall temperature 27 
22 Smfmn Minimum melt rate for snow during the year 27 
23 Smfmx Maximum melt rate for snow during the year 27 
24 Smtmp Snow melt base temperature 27 
25 Timp Snow pack temperature lag factor 27 
26 Tlaps Temperature lapse rate 27 
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4.5.2  Model calibration and Validation 

The outlet station in sub basin 14, was calibrated using data from 1988-1999 (4 years 

for warm up). A given set of calibration parameter values were found to give a good 

simulated stream flow. The optimum calibration parameters are presented in Table 

4.10 

 

Table 4.10:  Calibration Parameters 

No Parameter name Fitted value Min value Max value 
1 r_CN2 -0.247 -0.25 -0.17 
2 v_SURLAG 30.75 30.30 38.20 
3 v_ESCO 1.28 1.10 1.30 
4 v_APLHA_BF 0.22 0.18 0.24 
5 v_CH_K2 191.43 138.50 219.40 
6 v_CH_N2 0.95 0.88 0.97 
7 r_SOL_AWC 1.39 1.29 1.46 
8 r_BLAI 0.277 0.27 0.36 
9 v_GWQMN 3253.02 2771.20 3845.90 
10 r_GW_REVAP 0.073 0.06 0.09 
“v” means Replacement of the default parameter 
“r” means multiplication to default parameter 

 

The optimum value of the most sensitive parameter CN2 is small and this shows that 

the soils have high infiltration capacity and streamflow generation occurs only when 

the soils are saturated. The Nash Sutcliffe Efficiency (NSE) function was used as the 

optimization function during calibration with a minimum threshold for the 

behavioural solution at 0.5.  

 

The calibration hydrograph presented in Figure 4.17, shows that the NSE is 55%, R2 

is 0.59, p-factor is 44% and r-factor is 0.57. The validation period was from 2000-

2004. Figure 4.18 shows that the NSE is 35%, p-factor is 40% and r-factor is 59%. 
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The NS of the calibration is better than that one of validation and this could be 

attributed to some factors such as the spatial distribution of the rainfall stations and 

also the change in rainfall for the two data sets. LARS-WG was used for extension of 

the records and gap filling for the missing climate data hence this could have 

contributed to the low efficiency of the validation results.  

 

The p-factor of validation is better than that of calibration but the band width is not 

very large. This could be attributed to uncertainities in input data or some processes 

which were not captured by the model. However the model captures the trend of the 

observed flow.  

 

4.6  Projected Streamflow 

The calibrated model was then used to simulate the stream flow in the catchment for 

2020-2050 periods for both the A1B and B2 climate change scenarios. Figure 4.17 

and Figure 4.18 show the relationship between the observed and simulated 

streamflow during the calibration and validation periods. 
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Figure 4.17:  Streamflow of Malaba River during SWAT calibration period 
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Figure 4.18:  Streamflow of Malaba River during SWAT validation period 
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4.6.1  Analysis of Simulated Streamflow for Climate Scenarios 

4.6.1.1 Selection of Flow Baseline Period 

LARS weather generator was used to extend the observed weather data for the three 

stations i.e. Bungoma and Tororo. Daily rainfall data for Tororo and Bungoma 

stations (1980-2004) were used for the model input and 35 years of synthetic data 

were generated. The representative generated 35 years of daily temperature for 

Mbale station were taken as a representative for the whole catchment. Comparisons 

between the observed and simulated data are based on the monthly statistics such as 

mean difference and variance (Table 4.11). 
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Table 4.11: Rainfall for Bungoma and Tororo stations 

  Bungoma Station 

  J F M A M J J A S O N D 

Obs mean 60 58 136 225 216 96 96 99 116 147 126 59 

Sim mean 70 51 119 232 203 110 105 106 120 152 124 46 

Obs var 52 46 89 76 93 48 49 45 61 80 65 45 

Sim var 54 40 84 65 87 47 50 43 68 77 66 42 

  Tororo Station 

  J F M A M J J A S O N D 

Obs mean 76 79 143 203 217 97 89 115 118 159 159 81 

Sim mean 85 76 139 219 219 93 89 96 113 163 183 85 

Obs var 58 65 61 89 78 58 46 47 44 66 70 61 

Sim var 60 58 72 95 80 62 42 49 45 69 79 50 

Note; obs-observed data, Sim-simulated data, var-variance 

 

From Table 4.11, both the mean and variance of the observed and simulated data are 

in close range hence LARS-WG generated times series data that is similar to 

observed data. Therefore, LARS-WG was used to extend the rainfall time series data 

for both Bungoma and Tororo stations. The results were further summarized in 

graphs for proper visualization. The Figure 4.19 displays the comparisons of 

observed and simulated mean and variance for rainfall. 
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Figure 4.19:  Comparison of observed and simulated rainfall at rainfall stations 

 

4.6.1.2 Trend Analysis of Streamflow  

The trend of the projected climate variables for all the selected GCMs was 

determined using Mann-Kendall method and the Theil Sen’s slope was used to 

determine the magnitude of the trend. The results of this analysis are based on the 

5% significant level. 

 
 
Figure 4.20: Trend of simulated streamflow for A1B and A2 scenarios 
 

Figure 4.20 displays that simulated surface flow for A1B scenario has an increasing 

annual trend of 0.243 m3/s and A2 scenario also has an increasing annual trend of 

0.264 m3/s.  
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4.6.1.3 Change Analysis of Simulated Streamflow 

The main aim of determining the monthly changes was to determine whether there 

would be a shift in seasonality of flow. The analysis of projected changes in Malaba 

River includes the bais of the climate model that are contained in the models outputs. 

But since climate models biases exist in the projected data and also the baseline, the 

comparison of projected future discharge to the baseline is still viable in evaluating 

the impact of climate change on the changing river discharge.  

 

Figure 4.21: Change analysis of simulated flow for A1B and A2 Scenarios 

 

From Figure 4.21, simulated surface flow of A1B scenario follows the trend of the 

baseline period with the high flows being in June and low flows being in March. But 

the A1B displays monthly low flows as compared to the baseline with an average of 

2.3m3/s. 

 

For the A2 scenario, the simulated surface flow follows the trend of the baseline 

period. The simulated surface flow has highest flows in the month of June and the 
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lowest flows in the month of March. However, the simulated surface flow is higher 

than the baseline period by an average of 3.5m3/s monthly.  

 

4.6.1.4 Simulated Flow Variation Assessment 

FDC was developed for both the observed (1980-2010) and SWAT simulated flow 

(2020-2050 for both A1B and A2 scenarios) for comparison purposes. The FDCs 

were presented in one graph as shown in Figure 4.22, showing the flow percentile 

exceedence. Also, the percentile exceedence of very high flows (Q5), median flow 

(Q50) and very low flows (Q95) are summarized in Table 4.21. In the table 

additionally there is Q25 and Q75. 

 

 
 
Figure 4.22:  Simulated flow variations by flow duration curves 
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Table 4.12:  Flow variations from FDC for the selected percentiles 

No. 
Percentile 
exceedence A1B scenario A2 scenario Baseline 

1 5% 49.4 62.3 55.9 
2 25% 32.7 40.3 38.0 
3 50% 23.7 28.8 25.4 
4 75% 15.4 18.6 14.6 
5 95% 5.1 6.5 3.8 

 

From Figure 4.22 and Table 4.12, A1B scenarios has lower flows for percentiles less 

than 50 and equal or slightly higher flows for percentiles greater than 50 as compared 

to the baseline flows. A2 scenario has higher flows for all the percentiles as 

compared to the baseline flows. Therefore this means that higher floods are to occur 

and the lower flows will increase in A2 scenario as compared to the baseline period. 

Higher median flows are to also occur in the A2 scenario. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1  Conclusion 

LARS weather generator was used to gap fill observed data and also to project the 

climate variables of the catchment based on observed data. A hydrological model, 

SWAT was used to simulate streamflow from projected climate. Irrespective of 

insufficient observed data, the SWAT model proved to be applicable in Malaba River 

catchment. This study has revealed outcomes in the assessment of climate change on 

streamflow of Malaba River Catchment. The following are the important findings. 

 

An analysis was carried out on the hydroclimatic variables in the study area and the 

results showed that fluctuations in rainfall have an impact on streamflow. Therefore 

the historic climate change has contributed to fluctuations in stream flow. The 

climate of the catchment was projected and both the mean areal precipitation and 

temperature showed an insignificant increase for A1B and A2 scenarios. The 

monthly areal rainfall for A1B scenario is 1% less than the one for baseline period 

while for the A2 scenario it is 9% more than the value for baseline period. The 

SWAT model was successfully calibrated (1992-1999) with a NSE of 55%, R2 of 

0.59, p-factor of 44% and r-factor of 0.57. The validation period was from 2000-

2004 with NS of 35%, p-factor of 40% and r-factor of 59%. 

 

The simulated streamflow for A1B scenario is averagely 2.3 m3/s less than the one 

for baseline period per month whereas for the A2 scenario, it is averagely 0.1 m3/s 

more than the value baseline period per month.  
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It is therefore concluded that the A2 scenario is most likely going to be experienced 

which will impact on the surface water flow of Malaba River. The simulated flow 

will start to increase from April and reach its peak in June which is 13.3 m3/s higher 

than the value of baseline period and gradually decrease till it intersects with the 

baseline period in November. The flow from November to March is similar to the 

baseline period with March having the lowest flows. 

 

5.2  Recommendations 

From this study, I the author, propose some issues which limited the study 

undertaking in one way or another. 

 

The accuracy of SWAT model can be improved by ensuring data quantity and 

quality of the measured hydroclimatic variables such as rainfall, temperature and 

flow. Therefore the Ministry of Water and Environment, Uganda should maintain the 

equipment used for measuring the hydroclimatic variables to minimize on the data 

gaps. 

 

A higher NSE of 0.8 for the calibration period for Malaba River catchment should be 

attained to determine whether a NSE higher than 0.5 for the validation period can be 

attained. 

 

Also, the simulated flows did not take into account the current or growing water 

demands. Therefore, a research on the water availability for all water users in Malaba 

River catchment is proposed. It is clear that the changing climate has impacts on the 
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streamflow of Malaba River; therefore the Directorate of Water Resources 

Management, Uganda must address these issues within an integrated framework. The 

Ministry of Water and Environment Uganda should also carry out a study on how the 

Land use change within the catchment impacts the streamflow.  

. 
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